About
The AI-READI dataset is accessible from FAIRhub at fairhub.io. The dataset's landing page on FAIRhub contains various information about the dataset. Additional details are available in the dataset documentation at docs.aireadi.org
Dataset snapshot
Citations
Projects that publish using our datasets are required to cite both our marker paper and dataset. Below, we provide a list of those citations.
AI-READI Consortium. 2024. AI-READI: rethinking AI data collection, preparation and sharing in diabetes research and beyond. Nature metabolism. https://doi.org/10.1038/s42255-024-01165-x
Citing resources (17)
A Gangwal, A Lavecchia. 2025. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. Elsevier. https://www.sciencedirect.com/science/article/pii/S135964462500073X
S An, K Teo, MV McConnell, J Marshall. 2025. AI explainability in oculomics: How it works, its role in establishing trust, and what still needs to be addressed. Elsevier. https://www.sciencedirect.com/science/article/pii/S1350946225000254
E Farahmand, RR Azghan, NT Chatrudi, E Kim. 2025. Attengluco: Multimodal transformer-based blood glucose forecasting on ai-readi dataset. arxiv.org. https://arxiv.org/abs/2502.09919
C Owsley, DS Matthies, G McGwin, JC Edberg. 2025. Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI). bmjopen.bmj.com. https://bmjopen.bmj.com/content/15/2/e097449.abstract
LW Xu, YC Lin, YT Shen, X Qi, ZX Zhang, W Ma. 2025. From genes to products: High-efficiency biosynthesis and holistic optimization strategies for monounsaturated fatty acids. Elsevier. https://www.sciencedirect.com/science/article/pii/S0740002025001741
JA Rodriguez, NE Palermo, W Song. 2025. Lack of Association Between Hemoglobin A1c and Continuous Glucose Monitor Metrics Among Individuals with Prediabetes and Normoglycemia. liebertpub.com. https://www.liebertpub.com/doi/abs/10.1177/15209156251379506
C Nebeker, JC Bélisle-Pipon, BX Collins, A Cordes. 2025. Ethical sourcing in the context of health data supply chain management: a value sensitive design approach. academic.oup.com. https://academic.oup.com/jamiaopen/article-abstract/8/5/ooaf101/8294035
A McCarthy, I Valenzuela, RWS Chen, LRD Glass. 2025. A Practical Guide to Evaluating Artificial Intelligence Imaging Models in Scientific Literature. Elsevier. https://www.sciencedirect.com/science/article/pii/S2666914525001459
JE Evangelista, DJB Clarke, Z Xie, S Olaiya, H Kim. 2025. The CFDE Workbench: integrating metadata and processed data from Common Fund programs. biorxiv.org. https://www.biorxiv.org/content/10.1101/2025.02.04.636535.abstract
S Hallaj, A Heinke, FGP Kalaw, N Gim. 2025. Open Data Sharing in Clinical Research and Participants Privacy: Challenges and Opportunities in the Era of Artificial Intelligence. arxiv.org. https://arxiv.org/abs/2508.01140
AI-READI Consortium. Flagship dataset of type 2 diabetes from the AI-READI project. FAIRhub
- v1.0.0 (2024): https://doi.org/10.60775/fairhub.1
- v2.0.0 (2024): https://doi.org/10.60775/fairhub.2
- v3.0.0 (2025): https://doi.org/10.60775/fairhub.3
Citing resources (5)
E Farahmand, RR Azghan, NT Chatrudi, E Kim. 2025. Attengluco: Multimodal transformer-based blood glucose forecasting on ai-readi dataset. arxiv.org. https://arxiv.org/abs/2502.09919
A Alavi, K Cha, DP Esfarjani, B Patel, JLP Than. 2024. Perspective on Harnessing Large Language Models to Uncover Insights in Diabetes Wearable Data. medrxiv.org. https://www.medrxiv.org/content/10.1101/2024.07.29.24310315.abstract
E Farahmand, RR Azghan, NT Chatrudi. 2025. GluMind: Multimodal Parallel Attention and Knowledge Retention for Robust Cross-Population Blood Glucose Forecasting. arxiv.org. https://arxiv.org/abs/2509.18457
I Singh, D Singh, A Aggarwal. 2025. Predicting Type 2 Diabetes Mellitus Using Fundus Eye Scans: A Deep Learning Approach. ieeexplore.ieee.org. https://ieeexplore.ieee.org/abstract/document/11181411/
A Alavi, K Cha, DP Esfarjani, B Patel, JLP Than. 2024. Harnessing Large Language Models to Uncover Insights in Diabetes Wearable Data. researchsquare.com. https://www.researchsquare.com/article/rs-4966049/latest